Skip to content

AtlasMapper

hnoca.map.mapper.AtlasMapper(ref_model)

A class to map a query dataset to a reference dataset using scPoli, scVI or scANVI models.

Parameters:

Name Type Description Default
ref_model Union[SCANVI, SCVI, scPoli]

The reference model to map the query dataset to.

required

map_query(query_adata, retrain='partial', labeled_indices=None, **kwargs)

Map a query dataset to the reference dataset

Parameters:

Name Type Description Default
query_adata AnnData

The query dataset to map to the reference dataset

required
retrain Literal['partial', 'full', 'none']

Whether to retrain the query model.

  • "partial" will retrain the weights of the new batch key
  • "full" will retrain the entire model
  • "none" will use the reference model without retraining
'partial'
labeled_indices Optional[ndarray]

The indices of labeled cells in the query dataset. This is only used for scPoli models.

None
**kwargs

Additional keyword arguments to pass to the training function

{}

compute_wknn(ref_adata=None, k=100, query2ref=True, ref2query=False, ref_rep_key='X_latent', query_rep_key='X_latent', weighting_scheme='jaccard_square', top_n=None)

Compute the weighted k-nearest neighbors graph between the reference and query datasets

Parameters:

Name Type Description Default
k int

Number of neighbors per cell

100
query2ref bool

Consider query-to-ref neighbors

True
ref2query bool

Consider ref-to-query neighbors

False
weighting_scheme Literal['n', 'top_n', 'jaccard', 'jaccard_square', 'gaussian', 'dist']

How to weight edges in the ref-query neighbor graph

'jaccard_square'
top_n Optional[int]

The number of top neighbors to consider

None

get_presence_scores(split_by=None, random_walk=True, alpha=0.1, n_rounds=100, log=True)

Estimate the presence score of the query dataset

Parameters:

Name Type Description Default
split_by str

The column in the query dataset to split by

None
random_walk bool

Whether to use random walk to estimate presence score

True
alpha float

The heat diffusion parameter for the random walk

0.1
n_rounds int

The number of rounds for the random walk

100
log bool

Whether to log the presence score

True

Returns:

Type Description
dict

A dictionary with the presence scores

transfer_labels(label_key)

Transfer labels from the reference dataset to the query dataset

Parameters:

Name Type Description Default
label_key str

str The column in the reference dataset to transfer

required

Returns:

Type Description
dict

A dictionary with the transfer scores

get_matched_expression(rescale_factor=1)

Get the expression of reference cells matched to query cells. This can be used for quantitative comparisons like DE analysis.

Parameters:

Name Type Description Default
rescale_factor int

str Factor to rescale the log-normalized counts

1

Returns:

Type Description
AnnData

An AnnData object with the matched expression

save(output_dir)

Save the mapper object to disk

Parameters:

Name Type Description Default
output_dir str

str The directory to save the mapper object

required

load(input_dir) classmethod

Load the mapper object from disk

Parameters:

Name Type Description Default
input_dir str

str The directory to load the mapper object

required